Dualization in lattices given by implicational bases

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dualization in lattices given by ordered sets of irreducibles

Dualization of a monotone Boolean function on a finite lattice can be represented by transforming the set of its minimal 1 to the set of its maximal 0 values. In this paper we consider finite lattices given by ordered sets of their meet and join irreducibles (i.e., as a concept lattice of a formal context). We show that in this case dualization is equivalent to the enumeration of so-called mini...

متن کامل

Average Size of Implicational Bases

Implicational bases are objects of interest in formal concept analysis and its applications. Unfortunately, even the smallest base, the Duquenne-Guigues base, has an exponential size in the worst case. In this paper, we use results on the average number of minimal transversals in random hypergraphs to show that the base of proper premises is, on average, of quasi-polynomial size.

متن کامل

Probabilities of Boolean Functions given by Random Implicational Formulas

We study the asymptotic relation between the probability and the complexity of Boolean functions in the implicational fragment which are generated by large random Boolean expressions involving variables and implication, as the number of variables tends to infinity. In contrast to models studied in the literature so far, we consider two expressions to be equal if they differ only in the order of...

متن کامل

Minimum Implicational Basis for -Semidistributive Lattices

For a ∧-semidistributive lattice L, we study some particular implicational systems and show that the cardinality of a minimum implicational basis is polynomial in the size of join-irreducible elements of the lattice L. We also provide a polynomial time algorithm to compute a minimum implicational basis for L. © 2006 Published by Elsevier B.V.

متن کامل

An Algorithm for Dualization in Products of Lattices

Let L = L1 × · · · × Ln be the product of n lattices, each of which has a bounded width. Given a subset A ⊆ L, we show that the problem of extending a given partial list of maximal independent elements of A in L can be solved in quasi-polynomial time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2020

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2020.01.028